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Abstract— This paper shows that safety-critical control meth-
ods for the synthesis of safeguarding controllers also have an
important role to play in optimization theory. We are motivated
by applications where the solution of a variational inequality
is used to regulate a dynamically evolving plant. We design
algorithms to solve these problems by blending techniques
from safety-critical control with tools from monotone operator
theory. These algorithms are anytime, meaning that, if initialized
in the feasible set, they are guaranteed to return a feasible
solution to the optimization problem regardless of when they
are terminated, which makes them particularly suitable for
real-time applications. In some cases, our approach leads to
reinterpretations of well-known algorithms from the lens of
control theory, and in other cases we derive entirely novel
algorithms. Our results demonstrate the promising potential
of safety-critical control for both the analysis and design of
optimization algorithms.

I. INTRODUCTION

Convex optimization is of fundamental importance in
engineering and applied science, and developing and an-
alyzing numerical methods to solve convex programs has
been the subject of intense research over the last two
decades. A particularly successful framework has been to
view iterative algorithms as dynamical systems, and then use
tools from systems and control theory to analyze them. We
are particularly motivated by settings where the optimization
problem is used to regulate a dynamically evolving plant
[1] (e.g., providing setpoints, specifying optimization-based
controllers, steering plant toward an optimal steady-state).
This type of problem arises in application areas such as
power systems [2], network congestion control [3], and traffic
networks [4]. In these settings, the system-theoretic point of
view of optimization algorithms is critical for establishing
stability of the overall interconnected system.

We tackle here the problem of systematically deriv-
ing algorithms to solve monotone variational inequalities.
Monotone variational inequalities generalize many important
problems in convex optimization, including minimization
of a convex function subject to constraints, characterizing
the Nash equilibria of a game, and finding saddle points of
convex-concave functions. Our technical results are developed
with a view towards feedback optimization problems. Often,
these types of problems incorporate constraints, which when
violated would threaten the safe operation of the physical
system. Thus for a real-time implementation, it is crucial that
the algorithm is anytime, meaning that, if initialized in the
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feasible set, it is guaranteed to return a feasible point even if
terminated prematurely. We show that the design of anytime
algorithms to solve variational inequalities can equivalently
be cast as a feedback control problem, and solved by applying
tools from safety-critical control.

Related Work: Classical references on the dynamical
systems perspective of optimization algorithms include [5],
[6], [7]. The methods discussed in this paper are most closely
related to differential inclusions involving monotone set-
valued maps, originally introduced in [8]. These systems
have been equivalently described as a projected dynamical
systems [9] and complementarity systems [10], [11].

We employ techniques from safety-critical control, which
refers to the problem of designing a feedback controller to
ensure that the state of a system satisfies certain constraints.
This problem has gotten considerable attention in recent
years due to the enormous number of applications in areas
such as robotics and automotive systems. The work [12]
reviews set invariance in control. Control barrier functions
identify the range of inputs that keep the state safe leading
to the synthesis of feedback controller that enforce forward
invariance and asymptotic stability of the safe set. A popular
technique for synthesizing controllers which ensure safety
uses the concept of control barrier functions, see [13], [14],
[15] and references therein.

Statement of Contributions: We 1 show how tools from
safety-critical control can be used to design algorithms, in
the form of continuous-time dynamical systems, which solve
monotone variational inequalities. The algorithms are anytime,
meaning they maintain feasibility of the state at all times
and can therefore be terminated at any time. This makes
them well suited for real-time applications. The basic idea
is to view the constraint set for the problem as a safety
set for a control system, and then to design a feedback

1Throughout the paper we use the following notation. Let R denote the
set of real numbers. For v, w ∈ Rn, v ≤ w (resp. v < w) denotes vi ≤ wi

(resp. vi < wi) for i ∈ {1, . . . , n}. We let ∥v∥ denote the Euclidean norm.
We write A ⪰ 0 (resp., A ≻ 0) to denote A is positive semidefinite (resp.,
A is positive definite). For a symmetric matrix Q, λmin(Q) denotes the
minimum eigenvalue of Q. Given g : Rn → R, we denote its gradient by ∇g.
For g : Rn → Rm, ∂g(x)

∂x
denotes its Jacobian. For I ⊂ {1, 2, . . . ,m},

we denote by ∂gI (x)
∂x

the matrix whose rows are {∇gi(x)
⊤}i∈I . Given

a vector field F : Rn → Rn and a function V : Rn → R, the Lie
derivative of V along F is LFV (x) = ∇V (x)⊤F (x). Given a subset
C ⊂ Rn, the distance of x ∈ Rn to C is dist(x,C) = infy∈C ∥x− y∥.
We let C, int(C), and ∂C denote the closure, interior, and boundary of
C, respectively. The projection map onto C is ΠC : Rn ⇒ C, where
ΠC(x) =

{
y ∈ C | ∥x− y∥ = dist(x, C)

}
. Let C ⊂ Rn be a closed

and convex set. The normal cone to C at x ∈ Rn is NC(x) = {d ∈
Rn | d⊤(x′ − x) ≤ 0, ∀x′ ∈ C}, and the tangent cone to C at x is
TC(x) = {ξ ∈ Rn | d⊤ξ ≤ 0, ∀d ∈ NC(x)}.
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controller which maintains forward invariance of the set. We
consider two approaches for designing such controllers. The
first approach leads to a reinterpretation of projected methods
from a control-theoretic lens, and the second approach leads to
a novel class of algorithms. For both systems, we are able to
establish a correspondence between equilibria and solutions
of the variational inequality, global Lyapunov stability of
the equilibria, and global asymptotic stability in the case of
strong monotinicity. We demonstrate our methods on a convex
optimization problem. For reasons of space, the proofs of the
main results are omitted and will appear elsewhere.

II. PRELIMINARIES

Here, we present basic notions on invariance, stability, and
monotone variational inequalities.

A. Invariance and Stability Notions

We recall basic definitions from the theory of ordinary
differential equations [16]. Let G : Rn → Rn be a locally
Lipschitz vector field and consider the dynamical system ẋ =
G(x). Local Lipschitz continuity ensures that, for every initial
condition x0 ∈ Rn, there exists T > 0 and a unique trajectory
x : [0, T ] → Rn such that x(0) = x0 and ẋ(t) = G(x(t)). If
the solution exists for all t ≥ 0, the solution is complete. In
this case, the flow map is defined by Φt : Rn → Rn such
that Φt(x) = x(t), where x(t) is the unique solution with
x(0) = x.

A set C ⊂ Rn is forward invariant if x ∈ C implies that
Φt(x) ∈ C for all t ≥ 0. If C is forward invariant and x∗ ∈ C
is an equilibrium, x∗ is Lyapunov stable relative to C if for
every open set U containing x∗, there exists an open set Ū
also containing x∗ such that for all x ∈ Ū ∩C, Φt(x) ∈ U ∩C
for all t > 0. The equilibrium x∗ is asymptotically stable
relative to C if it is Lyapunov stable relative to C and there is
an open set U containing x∗ such that Φt(x) → x∗ as t → ∞
for all x ∈ U ∩C. For all the concepts introduced here, when
the invariant set is unspecified, we mean C = Rn. Analogous
definitions of Lyapunov stability and asymptotically stability
can be made for sets, instead of individual points.

B. Monotone Variational Inequalities

Here we review the basic theory of variational inequalities
and monotone maps [17]. Let F : Rn → Rn be a map and
C ⊂ Rn a set playing the role of constraint set. A variational
inequality is the problem of finding z∗ ∈ C such that

(z − z∗)⊤F (z∗) ≥ 0 ∀z ∈ C. (1)

We denote this problem VI(F, C) and define by SOL(F, C)
its set of solutions. We assume throughout that C is nonempty,
closed and convex, in which case z∗ ∈ SOL(F, C) if and
only if 0 ∈ F (z∗) + NC(z

∗). One important example of
variational inequality is the constrained optimization problem
minx∈C f(x), which is equivalent to VI(∇f, C).

We next provide a characterization of the solution set
SOL(F, C) for the special case where C is parameterized by
inequality and affine equality constraints,

C = {z ∈ Rn | g(z) ≤ 0, h(z) = Az − b = 0}, (2)

where g : Rn → Rm, h : Rn → Rk, A ∈ Rn×k, and
b ∈ Rk.Let I(z) = {1 ≤ i ≤ m | gi(z) = 0} denote the
set of active constraints at z ∈ C. The set C satisfies the
Mangasarian-Fromovitz Constraint Qualification (MFCQ)
condition at z, if {∇hj(z)}kj=1 are linearly independent and
there exists ξ ∈ Rn such that ∇hj(z)

⊤ξ = 0 for all j ∈
{1, . . . , k} and ∇gi(z)

⊤ξ < 0 for all i ∈ I(z).
If MFCQ holds at z∗, then z∗ ∈ SOL(F, C) if and only if

there exists u∗ ∈ Rm and v∗ ∈ Rk such that

F (z∗) +

m∑
i=1

u∗
i∇gi(z

∗) +

k∑
i=1

v∗i ∇hi(z
∗) = 0 (3a)

g(z∗) ≤ 0 (3b)
h(z∗) = 0 (3c)

u∗ ≥ 0 (3d)

(u∗)⊤g(z∗) = 0. (3e)

These are the Karash-Kuhn-Tucker (KKT) conditions, and
a triple (z∗, u∗, v∗) satisfying (3) is a KKT triple. The pair
(u∗, v∗) are the Lagrange multipliers corresponding to z∗.

We are particularly interested in variational inequalities
involving monotone maps. The map F : Rn −→ Rn is
strongly monotone if

(z1 − z2)
⊤(F (z1)− F (z2)) ≥ 0,

for all z1, z2 ∈ Rn, and F is µ-strongly monotone if there
exists µ > 0 such that

(z1 − z2)
⊤(F (z1)− F (z2)) ≥ µ ∥z1 − z2∥2 ,

for all z1, z2 ∈ Rn.
When F is monotone, VI(F, C) is called a monotone

variational inequality. In this case SOL(F, C) is convex if
it as nonempty and when F is µ-strongly monotone, then
SOL(F, C) is at most a singleton.

III. PROBLEM STATEMENT

Our goal is to design algorithms that solve variational
inequalities. We are motivated by real-time feedback opti-
mization problems arising in application areas such as power
systems, communication systems, and traffic networks, where
the solution to the variational inequality is used to regulate a
dynamically evolving process. However, for space reasons,
we restrict our attention here to developing the theory in the
context of an abstract variational inequality.

We want to design an algorithm in the form of continuous-
time dynamical system ż = G(z), such that trajectories of the
system converge to solutions of the variational inequality (1).
We want the algorithm to be anytime, meaning that, if
initialized at a feasible point, it is guaranteed to return a
feasible result, even if it is terminated before it converges
to a solution. This is particularly important for real-time
applications, where the result of the problem is used to
regulate a physical plant, and constraints ensure its safe
operation. Formally, the anytime property translates to the
requirement that the feasible set C is forward invariant with
respect to the dynamics. Finally, we seek to obtain stability
guarantees for solutions, z∗ ∈ SOL(F, C), for the dynamics
in question.
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IV. SAFETY-CRITICAL CONTROL

We introduce here basic concepts from safety-critical
control and introduce several methods for synthesizing safe-
guarding feedback controllers. We build on these later
to synthesize algorithms that solve variational inequalities.
Consider a control-affine system

ż = F(z, u) = F (z) +

r∑
i=1

uiFi(z), (4)

with Lipschitz vector fields Fi : Rn → Rn, for i ∈ {0, . . . , r},
and a set U ⊂ Rm of valid control inputs. Let C ⊂ Rn

represent the set of states where the system can operate
safely and u : Z → U be a Lipschitz feedback controller,
with Z ⊂ Rn a set containing C. The closed-loop system
under u is safe with respect to C if C is forward invariant. In
this case, we refer to u as a safe-guarding controller. Here we
consider the problem of designing a safe-guarding feedback
controller for (4) and provide two solutions to it.

A. Safeguarding Controller via Projection Onto Tangent Cone
The first strategy for synthesizing feedback controllers is

via projection onto the tangent cone of C, exploiting necessary
and sufficient conditions for set-invariance for continuous-
time dynamical systems [12].

Lemma 4.1 (Nagumo’s Theorem): Let ż = G(z) be a
dynamical system and C ⊂ Rn a closed convex set. Suppose
that for each initial condition, the system admits a unique
solution. Then, C is forward invariant under G if and only if
G(z) ∈ TC(z), for all z ∈ C.

To design a feedback controller using Nagumo’s Theorem,
we define the map Kproj : Rn ⇒ U as

Kproj(z) :=
{
u ∈ U | F (z) +

r∑
i=1

uiFi(z) ∈ TC(z)
}
.

The intuition is that any feedback u : C → U such that
u(z) ∈ Kproj(z) for z ∈ C will render C forward invariant.
This is formalized next.

Lemma 4.2: (Projection-based Safeguarding Feedback):
Consider the system (4) with safety set C, and suppose that
Kproj(z) ̸= ∅ for all z ∈ C. Then the feedback controller
u : C → U is safeguarding if u(z) ∈ Kproj(z) for all z ∈ C,
and the closed-loop system ż = F(z, u(z)) admits a unique
solution for all initial conditions.

While Lemma 4.2 provides sufficient conditions for a
feedback controller to be safe, it does not specify how
to synthesize it. For the special case where C can be
parameterized in terms of inequality and equality constraints
as in (2), we propose a strategy where u(z) is expressed as
the solution to a mathematical program. If MFCQ holds at
x ∈ C, the tangent cone can conveniently be expressed as
TC(z) = {ξ ∈ Rn

∣∣∣∂h(z)∂z ξ = 0, ∂gI(z)
∂z ξ ≤ 0}, in which case

Kproj(z) =
{
u ∈ U | LF gi(z) +

r∑
ℓ=1

uℓLFℓ
gi(x) ≤ 0,

LFhj(z) +

r∑
ℓ=1

uℓLFℓ
hj(z) = 0, i ∈ I(z), 1 ≤ j ≤ k

}
.

Note that Kproj(z) is defined in terms of affine constraints
on the control input u. This suggests an optimization-
based synthesis of a feedback satisfying the hypotheses of
Lemma 4.2 by letting

u(z) ∈ argmin
u∈Kproj(z)

{
J(z, u)

}
, (5)

for an appropriate choice of cost function J : C × U → R.
In general, care must be taken to ensure that the set Kproj is
nonempty, and that u(z) satisfies the appropriate regularity
conditions to ensure existence and uniqueness for solutions of
the resulting closed-loop dynamics. Additional complications
arise when solutions to (5) are not unique. We address each
of these challenges in the following sections.

B. Safeguarding Controller via Control Barrier Functions

The second strategy for synthesizing safeguarding feedback
controllers uses the notion of vector control barrier functions.
Let C be a safety set defined as in (2), and C ⊂ Z ⊂ Rn.
We say that ϕ(z) = (g(z), h(z)) is a a vector control barrier
function (VCBF) of C on Z relative to U if there exists α > 0
such that the map Kcbf : Rn ⇒ U , where

Kcbf(z) =
{
u ∈ U | LF gi(z)+

r∑
ℓ=1

uℓLFℓ
gi(z)+αgi(z)≤0,

LFhj(z) +

r∑
ℓ=1

uℓLFℓ
hj(z) + αhj(z) = 0,

1 ≤ i ≤ m, 1 ≤ j ≤ k
}
,

takes nonempty values for all z ∈ Z . In the special case
where m = 1 and k = 0, the definition above coincides with
the usual notion of a control barrier function [14] with a
linear class K function.

If ϕ is a VCBF, and u is a feedback where u(z) ∈
Kcbf(z) for all z ∈ C, it follows that along solutions to (4),
d
dtg(z(t)) ≤ −αg(z(t)) and d

dth(z(t)) = −αh(z(t)), which
implies safety of C. This is stated formally in the next result,
which is generalization of [14, Corollary 2]. The result is
stronger than Lemma 4.2, since it not only guarantees forward
invariance of C, but also that any trajectory starting at a point
Z \ C, converges to C asymptotically.

Lemma 4.3: (VCBF-based Safeguarding Feedback): Con-
sider the system (4) with safety set C defined in (2), and
let ϕ = (g, h) be a vector control barrier function for C on
Z relative to U . Then the feedback controller u : Z → U
is safeguarding if u(z) ∈ Kcbf(z) for all z ∈ Z , and the
closed-loop system ż = F(z, u(z)) admits unique solutions
for all initial conditions.

Note that Lemma 4.3 slightly generalizes [14, Corollary
2] since it does not require Lipschitzness of the feedback
controller (in fact, the uniqueness of solutions is enough to
ensure safety via Nagumo’s theorem).

To synthesize the safe-guarding feedback controller, one
can pursue a design using a similar approach to Section IV-A.
Given a cost function J : Z ×U → R, we let u(z) solve the
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following mathematical program:

u(z) ∈ argmin
u∈Kcbf(z)

{
J(z, u)

}
. (6)

Similar to the case of projection-based safeguarding feedback
control, verifying the existence and uniqueness of solutions
to the closed-loop system, as well as handling the situation
where (6) does not have unique solutions, is nontrivial in
general. These challenges can be addressed in the specific
applications we consider in the following sections.

V. DESIGN OF CONTINUOUS-TIME FLOWS SOLVING
VARIATIONAL INEQUALITIES

In this section, we use the control strategies of Section IV
to design an algorithm, in the form of a continuous-time
dynamical system, solving the variational inequality VI(F, C),
where C is given as (2), F is continuously differentiable, and
g is twice continuously differentiable. Our approach views C
as a safety set for the control-affine system

ż = F(z, u, v)

= −F (z)−
m∑
i=1

ui∇gi(z)−
k∑

j=1

vj∇hj(z).
(7)

Our design proceeds by synthesizing a feedback controller
(u, v) to guarantee safety of C while ensuring convergence
to SOL(F, C). Before proceeding, we briefly explain the
interpretation of the system (7). Based on the observation
that ż = −F (z) will find solutions to the unconstrained
variational inequality VI(F,Rn), we set the drift term of (7)
to −F (z). However, flowing along this term might eventually
violate the constraints. The inputs modify the flow of the
drift to account for the constraints in a way that ensures that
the solutions to (7) stay inside of or approach C.

A. Projected Monotone Flow

We begin with a controller design following Section IV-A.
Assuming MFCQ holds at z ∈ Rn, the admissible inputs are

Kproj(z) =
{
(u, v) ∈ Rm

≥0 × Rk |

− ∂gI
∂z

∂g

∂z

⊤
u− ∂gI

∂z

∂h

∂z

⊤
v ≤ ∂gI

∂z
F (z),

− ∂h

∂z

∂g

∂z

⊤
u− ∂h

∂z

∂h

∂z

⊤
v =

∂h

∂z
F (z)

}
.

The following result states that the set of admissible controls
is nonempty. We omit its proof for space reasons, but note
that it readily follows from Farka’s Lemma [18].

Lemma 5.1: (Projection onto Tangent Cone is Feasible):
If MFCQ holds everywhere on C, then Kproj(z) ̸= ∅ for
all z ∈ C.

We set the objective function to be

J(z, u) =
1

2

∥∥ m∑
i=1

ui∇gi(z) +

k∑
j=1

vj∇hj(z)
∥∥2. (8)

This function measures the magnitude of the “modification”
of the drift term in (7). Thus, the QP-based controller (5)
has the interpretation, at each z, of finding the control input

such that the closed-loop system dynamics are as close as
possible to −F (z), while still being in TC(z).

Note that the program (5) may not necessarily have unique
solutions. However, the closed-loop dynamics of (7) is well
defined regardless of which solution to (5) is chosen. In fact,
we show next that the closed-loop system is equivalent to
the system obtained by projecting −F (z) onto TC(z).

Proposition 5.2: (Equivalence of Closed-loop to Pro-
jected Dynamical System): Assume MFCQ holds at z ∈ C
and let (u, v) be any solution to (5). Then, F(z, u, v) =
ΠTC(z)(−F (z))

The control-theoretic design outlined here results in the
projected dynamical system ż = ΠTC(z)(−F (z)), which we
refer to as the projected monotone flow. This system admits
many equivalent descriptions, for example in terms of mono-
tone differential inclusions, or complementarity systems [10],
[11], [19], and its properties have been extensively studied [9].
The value of Proposition 5.2 stems from showing that safety-
critical control can be used to systematically design algorithms
that solve variational inequalities. Though the control strategy
pursued in this section results in a known flow, this sets up the
basis for employing other design strategies from safety-critical
control to yield novel methods, as we show later.

Regarding the properties of the projected monotone flow,
since unique solutions exist for all initial conditions [19,
Chapter 3.2, Theorem 1(i)], forward invariance of C follows
from Lemma 4.2. The equilibria of the projected monotone
flow are equivalent to solutions to VI(F, C), and are Lyapunov
stable. Finally, stability of a solution z∗ can be certified
using the Lyapunov function V (z) = 1

2 ∥z − z∗∥2, as a
consequence of [19, Chapter 3.2, Theorem 1(ii)].

Theorem 5.3: (Stability Properties of Projected Monotone
Flow): Let C convex, and suppose MFCQ everywhere on C.
The following stability results hold for the projected monotone
flow:

(i) C is forward invariant;
(ii) z∗ is an equilibrium of the projected monotone flow if

and only if z∗ ∈ SOL(F, C);
(iii) If z∗ ∈ SOL(F, C) and F is monotone, then z∗ is

globally Lyapunov stable relative to C;
(iv) If z∗ ∈ SOL(F, C) and F is µ-strongly monotone, then

z∗ is globally asymptotically stable relative to C.

B. Safe Monotone Flow

In this section, we design an algorithm to solve VI(F, C)
using the strategy outlined in Section IV-B. Since C is given
by (2), we use ϕ = (g, h) as a VCBF. Letting α > 0 be a
design parameter, the set admissible controls is

Kcbf(z) =
{
(u, v) ∈ Rm

≥0 × Rk
∣∣∣

− ∂g

∂z

∂g

∂z

⊤
u− ∂g

∂z

∂h

∂z

⊤
v ≤ ∂g

∂z
F (z)− αg(z)

− ∂h

∂z

∂g

∂z

⊤
u− ∂h

∂z

∂h

∂z

⊤
v =

∂h

∂z
F (z)− αh(z)

}
.

One can show, cf. [20, Lemma 4.1], that if MFCQ holds
everywhere on C, then Kcbf(z) ̸= ∅ for all z in an open set Z
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containing C, which implies that ϕ is a valid VCBF for C on
Z relative to U = Rm

≥0 × Rk.
We now design a controller for (7) using the optimization-

based feedback (6), where the objective function J is given
by (8). This controller has the same interpretation as before:
determining the control input such that the closed-loop system
dynamics are as close as possible to −F (z). Similar to the
case with projection-based methods, the problem (6) does not
necessarily have unique solutions. Nonetheless, the closed-
loop system is well-defined regardless of which solution is
chosen. We refer to this system as the safe monotone flow.
The following result summarizes its properties. The proof
us similar to results in [20, Proposition 4.6, Proposition 5.2,
Proposition 4.4].

Proposition 5.4: (Properties of Safe Monotone Flow):
Assume MFCQ holds for everywhere on C and let Z ⊂ Rn

be an open set containing C on which Kcbf takes nonempty
values. Then

• Let (u, v) solve (6) at z ∈ Z . Then, F(z, u, v) = Fα(z),
where Fα(z) = Π

T
(α)
C (z)

(−F (z)) and

T
(α)
C (z) =

{
ξ ∈ Rn |

∂g(z)

∂z
ξ ≤ −αg(z),

∂h(z)

∂z
ξ = −αh(z)

}
;

(9)

• Fα is locally Lipschitz continuous on Z;
• For all z ∈ C, limα→∞ Fα(z) = ΠTC(z)(−F (z)).
Proposition 5.4 highlights the relationship between the safe

monotone flow and the projected monotone flow as well as
their differences. In particular, the safe monotone flow can be
interpreted as a projection of −F (z) onto an approximation of
the tangent cone at C, T (α)

C (z). This approximation becomes
exact as α → ∞. However, unlike the usual tangent cone,
T

(α)
C (z) is well defined for values outside of C, and the

projection Fα(z) is a Lipschitz map.
These differences mean that the safe monotone flow has

two distinct advantages when compared with the projected
monotone flow. First, unlike the projected monotone flow,
the safe monotone flow is well-defined for infeasible initial
conditions. Secondly, Lipschitz continuity of the dynamics
ensures they can be numerically implemented using standard
ODE discretization schemes.

Remark 5.5: The safe monotone flow is a generalization
of the safe gradient flow introduced in [20]. While this
system was originally studied in the context of nonconvex
optimization, and local stability results were obtained, here
we show that the same design methodology can be used to
obtain algorithms solving monotone variational inequalities
of the form VI(F, C), and derive global stability results. •

We now move on to the problem of characterizing the
equilibria of the closed-loop system under the safe monotone
flow, and their stability properties. We show that the equilibria
of the safe monotone flow are equivalent to solutions of
VI(F, C), and are stable. Though the proof has been omitted
for space reasons, we remark that the stability properties can

Fig. 1: (Left) Using the projected monotone flow and safe monotone flow
to solve (10). Gray lines correspond to level sets of the objective function,
and the shaded region is the feasible set. The solution to (10) is denoted
by the blue dot. Colored trajectories correspond to solutions of the safe
monotone flow with varying values of α, and the dashed trajectory is the
solution to the projected monotone flow. (Right) Using the safe monotone
flow to solve the game described in Section VI-B. We plot their vector field
corresponding to the safe monotone flow with α = 0.1. The shaded region
is the feasible set. The Nash equilibrium is denoted by the blue dot. Colored
trajectories correspond to solutions of the safe monotone flow from various
initial conditions.

be verified using the following Lyapunov function:

V (z) =
1

2
∥z − z∗∥2

− 1

α2
inf

ξ∈T
(α)
C (z)

{
ξ⊤F (z) +

1

2
∥ξ∥2

}
.

Theorem 5.6: (Stability Properties of Safe Monotone
Flow): Suppose that C is convex, and MFCQ holds everywhere
on C. The following stability results hold for the safe
monotone flow:

(i) C is forward invariant and asymptotically stable;
(ii) z∗ is an equilibrium of the projected monotone flow if

and only if z∗ ∈ SOL(F, C);
(iii) If z∗ ∈ SOL(F, C) and F is monotone, then z∗ is

globally Lyapunov stable relative to C;
(iv) If z∗ ∈ SOL(F, C) and F is µ-strongly monotone, then

z∗ is globally asymptotically stable relative to C.

VI. NUMERICAL EXAMPLES

Here we illustrate our results on two example problems.
The first is a simple convex optimization problem and the
second is the problem of finding the Nash equilibria of
a continuous game. We show that both problems can be
expressed as monotone variational inequalities, and can be
solved using the safe monotone flow.

A. Convex Optimization

Consider a simple quadratically constrained quadratic
program of the form

minimize
z∈Rn

1

2
z⊤Q0z + p⊤0 z

subject to
1

2
z⊤Qiz + p⊤i z ≤ bi ∀i ∈ {1, . . . ,m}.

(10)

where Q0 ≻ 0 and Qi ≻ 0 for all i = 1, . . . ,m. In this
case, (10) is a strongly convex optimization problem, and the
solutions to the optimization problem are given by the set
SOL(F, C), where F (z) = Q0z + p0 and

C =

{
z ∈ Rn | 1

2
z⊤Qiz + p⊤i z ≤ bi, i = 1, . . . ,m

}
.
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We search for the solutions using the projected monotone
flow, and the safe monotone flow for various values of α. We
illustrate our results in Figure 1(left). Since for this problem,
F is µ-strongly monotone with µ = λmin(Q0), the solution
to (10) is unique. Furthermore by Theorem 5.3 and Theorem
5.6, the unique solution is globally asymptotically stable
relative to C for both the projected monotone flow and the
safe monotone flow corresponding to VI(F, C).

B. Nash Equilibrium Seeking
Consider a game with two players i ∈ {1, 2}, where each

player seeks to minimize a cost function Ji(z1, z2), subject
to the constraint z ∈ Ci. A point z∗ ∈ C1 ∩ C2 is called a
Nash equilibrium [21] if

J1(z
∗
1 , z

∗
2) ≤ J1(z1, z

∗
2) ∀z1 such that (z1, z∗2) ∈ C1

J2(z
∗
1 , z

∗
2) ≤ J2(z

∗
1 , z2) ∀z2 such that (z∗1 , z2) ∈ C2.

Informally, a Nash equilibrium is a point where neither
player can further reduce their cost by only changing their
decision. The Nash equilibria of a game of this form can
be characterized by solutions to the variational inequality
VI(F, C), where F is the pseudogradient operator, F (z) =
(∇z1J1(z),∇z2J2(z)), and C = C1 ∩ C2.

Here we consider a game where for i ∈ {1, 2},

Ji(z1, z2) =
1

2
(z − z̄(i))⊤Qi(z − z̄(i)),

with z̄(i) chosen at random and

Q1 =

[
1 −1
−1 1

]
Q2 =

[
1 1
1 1

]
and C is the unit ball in R2. In this case, the pseudogradient
operator is strongly monotone, so by Theorem 5.6 the unique
Nash equilibrium is globally asymptotically stable with
respect to the safe monotone flow. In Figure 1(right) show
the vector field corresponding to the safe monotone flow with
α = 0.1, and plot several representative trajectories. Although
Theorem 5.6 only guarantees that trajectories starting within
C converge to the solution, those starting from infeasible
initial conditions converge to the solution as well.

VII. CONCLUSIONS

We have shown how designing anytime algorithms to
solve variational inequalities can be understood as a feedback
control problem. Using techniques from safety-critical control,
we have synthesized two continuous-time dynamics which
find solutions to monotone variational inequalities. The first
system is equivalent to projected methods, whereas the
second system, termed safe monotone flow, is novel. For
the latter, we have established stability of the equilibria
(corresponding to the solutions of the variational inequality)
and asymptotic stability in the case of strong monotonicity.
Future work will study convergence of the safe monotone flow
starting from infeasible conditions, establish conditions for
convergence without the assumption of strong monotonicity,
and develop methods for distributed problems. Finally, we
hope to apply our methods to feedback optimization problems
arising in applications such as power systems, traffic networks,
communications systems.
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